28 research outputs found

    Predicting Long-Term Mortality after Acute Coronary Syndrome Using Machine Learning Techniques and Hematological Markers.

    Get PDF
    INTRODUCTION: Hematological indices including red cell distribution width and neutrophil to lymphocyte ratio are proven to be associated with outcomes of acute coronary syndrome. The usefulness of machine learning techniques in predicting mortality after acute coronary syndrome based on such features has not been studied before. OBJECTIVE: We aim to create an alternative risk assessment tool, which is based on easily obtainable features, including hematological indices and inflammation markers. PATIENTS AND METHODS: We obtained the study data from the electronic medical records of 5053 patients hospitalized with acute coronary syndrome during a 5-year period. The time of follow-up ranged from 12 to 72 months. A machine learning classifier was trained to predict death during hospitalization and within 180 and 365 days from admission. Our method was compared with the Global Registry of Acute Coronary Events (GRACE) Score 2.0 on a test dataset. RESULTS: For in-hospital mortality, our model achieved a c-statistic of 0.89 while the GRACE score 2.0 achieved 0.90. For six-month mortality, the results of our model and the GRACE score on the test set were 0.77 and 0.73, respectively. Red cell distribution width (HR 1.23; 95% CL 1.16-1.30; P < 0.001) and neutrophil to lymphocyte ratio (HR 1.08; 95% CL 1.05-1.10; P < 0.001) showed independent association with all-cause mortality in multivariable Cox regression. CONCLUSIONS: Hematological markers, such as neutrophil count and red cell distribution width have a strong association with all-cause mortality after acute coronary syndrome. A machine-learned model which uses the abovementioned parameters can provide long-term predictions of accuracy comparable or superior to well-validated risk scores.Peer Reviewe

    Machine-learned models using hematological inflammation markers in the prediction of short-term acute coronary syndrome outcomes.

    Get PDF
    BACKGROUND: Increased systemic and local inflammation play a vital role in the pathophysiology of acute coronary syndrome. This study aimed to assess the usefulness of selected machine learning methods and hematological markers of inflammation in predicting short-term outcomes of acute coronary syndrome (ACS). METHODS: We analyzed the predictive importance of laboratory and clinical features in 6769 hospitalizations of patients with ACS. Two binary classifications were considered: significant coronary lesion (SCL) or lack of SCL, and in-hospital death or survival. SCL was observed in 73% of patients. In-hospital mortality was observed in 1.4% of patients and it was higher in the case of patients with SCL. Ensembles of decision trees and decision rule models were trained to predict these classifications. RESULTS: The best performing model for in-hospital mortality was based on the dominance-based rough set approach and the full set of laboratory as well as clinical features. This model achieved 81 ± 2.4% sensitivity and 81.1 ± 0.5% specificity in the detection of in-hospital mortality. The models trained for SCL performed considerably worse. The best performing model for detecting SCL achieved 56.9 ± 0.2% sensitivity and 66.9 ± 0.2% specificity. Dominance rough set approach classifier operating on the full set of clinical and laboratory features identifies presence or absence of diabetes, systolic and diastolic blood pressure and prothrombin time as having the highest confirmation measures (best predictive value) in the detection of in-hospital mortality. When we used the limited set of variables, neutrophil count, age, systolic and diastolic pressure and heart rate (taken at admission) achieved the high feature importance scores (provided by the gradient boosted trees classifier) as well as the positive confirmation measures (provided by the dominance-based rough set approach classifier). CONCLUSIONS: Machine learned models can rely on the association between the elevated inflammatory markers and the short-term ACS outcomes to provide accurate predictions. Moreover, such models can help assess the usefulness of laboratory and clinical features in predicting the in-hospital mortality of ACS patients

    Knowledge-Aware Audio-Grounded Generative Slot Filling for Limited Annotated Data

    Full text link
    Manually annotating fine-grained slot-value labels for task-oriented dialogue (ToD) systems is an expensive and time-consuming endeavour. This motivates research into slot-filling methods that operate with limited amounts of labelled data. Moreover, the majority of current work on ToD is based solely on text as the input modality, neglecting the additional challenges of imperfect automatic speech recognition (ASR) when working with spoken language. In this work, we propose a Knowledge-Aware Audio-Grounded generative slot-filling framework, termed KA2G, that focuses on few-shot and zero-shot slot filling for ToD with speech input. KA2G achieves robust and data-efficient slot filling for speech-based ToD by 1) framing it as a text generation task, 2) grounding text generation additionally in the audio modality, and 3) conditioning on available external knowledge (e.g. a predefined list of possible slot values). We show that combining both modalities within the KA2G framework improves the robustness against ASR errors. Further, the knowledge-aware slot-value generator in KA2G, implemented via a pointer generator mechanism, particularly benefits few-shot and zero-shot learning. Experiments, conducted on the standard speech-based single-turn SLURP dataset and a multi-turn dataset extracted from a commercial ToD system, display strong and consistent gains over prior work, especially in few-shot and zero-shot setups.Comment: to submit to CS&
    corecore